11-4 Irrational Square Roots

Objective: To simplify radicals and to find decimal approximations of irrational square roots.

Vocabulary

Irrational numbers Real numbers that can't be expressed in the form $\frac{a}{b}$,

where a and b are integers. Their exact values can't be expressed as either terminating or repeating decimals.

Property

Property of Completeness Every decimal represents a real number, and every real number can be represented by a decimal.

Example 1	Simplify: a. $\sqrt{256}$	b. $\sqrt{50}$ c. $2\sqrt{80}$ d. $\sqrt{704}$
Solution	a. $\sqrt{256} = \sqrt{4 \cdot 64}$	Factor within the radical sign.
	$= \sqrt{4} \cdot \sqrt{64}$	Use the product property of square roots.
	$= 2 \cdot 8$	Simplify.
	= 16	
	b. $\sqrt{50} = \sqrt{25 \cdot 2}$	
	$=\sqrt{25}\cdot\sqrt{2}$	
	$= 5\sqrt{2}$	
	$\mathbf{c.}2\sqrt{80} = 2\sqrt{16\cdot 5}$	
	$= 2 \cdot 4\sqrt{5}$	
	$= 8\sqrt{5}$	
	$\mathbf{d.}\sqrt{704} = \sqrt{64 \cdot 11}$	
	$= 8\sqrt{11}$	

Simplify.

1.
$$\sqrt{27}$$
 3 $\sqrt{3}$ 2. $\sqrt{20}$ 2 $\sqrt{5}$ 3. $\sqrt{72}$ 6 $\sqrt{2}$ 4. $\sqrt{32}$ 4 $\sqrt{2}$ 5. $\sqrt{48}$ 4 $\sqrt{3}$ 6. $\sqrt{45}$ 3 $\sqrt{5}$ 7. $\sqrt{196}$ 14 8. $\sqrt{80}$ 4 $\sqrt{5}$ 9. 2 $\sqrt{63}$ 6 $\sqrt{7}$ 10. 4 $\sqrt{98}$ 28 $\sqrt{2}$ 11. $7\sqrt{28}$ 14 $\sqrt{7}$ 12. 4 $\sqrt{40}$ 8 $\sqrt{10}$ 13. $\sqrt{441}$ 21 14. $\sqrt{289}$ 17 15. 3 $\sqrt{50}$ 15 $\sqrt{2}$ 16. 12 $\sqrt{50}$ 60 $\sqrt{2}$ 17. $\sqrt{729}$ 27 18. $\sqrt{432}$ 12 $\sqrt{3}$ 19. 8 $\sqrt{75}$ 40 $\sqrt{3}$ 20. 2 $\sqrt{90}$ 6 $\sqrt{10}$ 21. $\sqrt{147}$ 7 $\sqrt{3}$ 22. $\sqrt{288}$ 12 $\sqrt{2}$ 23. $\sqrt{4225}$ 65 24. 5 $\sqrt{800}$ 100 $\sqrt{2}$ 25. 5 $\sqrt{1025}$ 25 $\sqrt{41}$

11-4 Irrational Square Roots (continued)

Example 2 Approximate
$$\sqrt{396}$$
 to the nearest hundredth. Use your calculator or the table at the back of your textbook.

Solution
$$\sqrt{396} = \sqrt{2^2 \cdot 3^2 \cdot 11}$$

$$= \sqrt{2^2} \cdot \sqrt{3^2} \cdot \sqrt{11}$$

$$= 6\sqrt{11}$$
From the table:
$$\sqrt{11} \approx 3.317$$

$$6\sqrt{11} \approx 6(3.317) \approx 19.902$$
Therefore $\sqrt{396} \approx 19.90$.

Example 3 Approximate
$$\sqrt{0.6}$$
 to the nearest hundredth. Use your calculator or the table at the back of your textbook.

Solution
$$\sqrt{0.6} = \frac{\sqrt{60}}{\sqrt{100}} = \frac{\sqrt{60}}{10} \approx \frac{7.746}{10} = 0.7746$$
Therefore $\sqrt{0.6} \approx 0.77$.

In Exercises 26-37, use your calculator or the table at the back of the book.

Approximate each square root to the nearest tenth.

26.
$$\sqrt{600}$$
 24.5 27. $\sqrt{200}$ 14.1 28. $-\sqrt{800}$ -28.3 29. $-\sqrt{500}$ -22.4 30. $-\sqrt{2700}$ -52.0 31. $-\sqrt{2200}$ -46.9 32. $\pm\sqrt{6600}$ \pm 81.2 33. $\pm\sqrt{4800}$ \pm 69.3

Approximate each square root to the nearest hundredth. 34.
$$\sqrt{56}$$
 7.48 35. $\sqrt{32}$ 5.66 36. $-\sqrt{0.7}$ -0.84 37. $-\sqrt{0.2}$ -0.45

Mixed Review Exercises

Find the indicated square roots.

1.
$$\sqrt{100}$$
 10 2. $-\sqrt{144}$ -12 3. $\sqrt{\frac{9}{25}}$ $\frac{3}{5}$
4. $-\sqrt{\frac{36}{121}}$ $-\frac{6}{11}$ 5. $\sqrt{154^2}$ 154 6. $\sqrt{(\frac{2}{5})^2}$ $\frac{2}{5}$

Simplify.

7.
$$(13x)^2$$
 169 x^2 8. $(2y^3z^6)^2$ 4 y^6z^{12} 9. $(x + 2y)^2$ x^2 + 4 xy + 4 y^2 10. $[10(a + 1)]^2$ 11. $(9a^3b^7c)^2$ 12. $(4z^2 + 3y^3)(4z^2 - 3y^3)$ 16 z^4 9 z^6

190